98 Validate Binary Search Tree

Given the root of a binary tree, determine if it is a valid binary search tree (BST).

A valid BST is defined as follows:

  • The left subtree of a node contains only nodes with keys less than the node's key.
  • The right subtree of a node contains only nodes with keys greater than the node's key.
  • Both the left and right subtrees must also be binary search trees.

Example 1:

  2
 / \
1   3

Input: root = [2,1,3]
Output: true

Example 2:

  5
 / \
1   4
   / \
  3   6

Input: root = [5,1,4,null,null,3,6]
Output: false
Explanation: The root node's value is 5 but its right child's value is 4.

Constraints:

  • The number of nodes in the tree is in the range [1, 104].
  • -231 <= Node.val <= 231 - 1
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right

class Solution:
    def isValidBST(self, root: Optional[TreeNode]) -> bool:
        def validate(
            node: Optional[TreeNode],
            low=-math.inf,
            high=math.inf
        ) -> bool:
            if not node:
                return True
            if node.val <= low or node.val >= high:
                return False
            return (
                validate(node.left, low, node.val) and
                validate(node.right, node.val, high)
            )

        return validate(root)

'''
In order
'''
class Solution:
    def isValidBST(self, root: TreeNode) -> bool:

        def inorder(root):
            if not root:
                return True
            if not inorder(root.left):
                return False
            if root.val <= self.prev:
                return False
            self.prev = root.val
            return inorder(root.right)

        self.prev = -math.inf
        return inorder(root)