You are given an integer array nums
and two integers minK
and maxK
.
A fixed-bound subarray of nums
is a subarray that satisfies the following conditions:
- The minimum value in the subarray is equal to
minK
.
- The maximum value in the subarray is equal to
maxK
.
Return the number of fixed-bound subarrays.
A subarray is a contiguous part of an array.
Example 1:
Input: nums = [1,3,5,2,7,5], minK = 1, maxK = 5
Output: 2
Explanation: The fixed-bound subarrays are [1,3,5] and [1,3,5,2].
Example 2:
Input: nums = [1,1,1,1], minK = 1, maxK = 1
Output: 10
Explanation: Every subarray of nums is a fixed-bound subarray.
There are 10 possible subarrays.
Constraints:
2 <= nums.length <= 105
1 <= nums[i], minK, maxK <= 106
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
|
class Solution:
def countSubarrays(self, nums: List[int], minK: int, maxK: int) -> int:
# min_position, max_position: the MOST RECENT positions of minK and maxK.
# left_bound: the MOST RECENT value outside the range [minK, maxK].
answer = 0
min_position = max_position = left_bound = -1
# Iterate over nums, for each number at index i:
for i, number in enumerate(nums):
# If the number is outside the range [minK, maxK], update the most recent left_bound.
if number < minK or number > maxK:
left_bound = i
# If the number is minK or maxK, update the most recent position.
if number == minK:
min_position = i
if number == maxK:
max_position = i
# The number of valid subarrays equals the number of elements between left_bound and
# the smaller of the two most recent positions.
answer += max(0, min(min_position, max_position) - left_bound)
return answer
|