A perfectly straight street is represented by a number line. The street has street lamp(s) on it and is represented by a 2D integer array lights
. Each lights[i] = [positioni, rangei]
indicates that there is a street lamp at position positioni that lights up the area from [positioni - rangei, positioni + rangei]
(inclusive).
The brightness of a position p
is defined as the number of street lamp that light up the position p
.
Given lights
, return the brightest position on the street. If there are multiple brightest positions, return the smallest one.
Example 1:
Input: lights = [[-3,2],[1,2],[3,3]]
Output: -1
Explanation:
The first street lamp lights up the area from [(-3) - 2, (-3) + 2] = [-5, -1].
The second street lamp lights up the area from [1 - 2, 1 + 2] = [-1, 3].
The third street lamp lights up the area from [3 - 3, 3 + 3] = [0, 6].
Position -1 has a brightness of 2, illuminated by the first and second street light.
Positions 0, 1, 2, and 3 have a brightness of 2,
illuminated by the second and third street light.
Out of all these positions, -1 is the smallest, so return it.
Example 2:
Input: lights = [[1,0],[0,1]]
Output: 1
Explanation:
The first street lamp lights up the area from [1 - 0, 1 + 0] = [1, 1].
The second street lamp lights up the area from [0 - 1, 0 + 1] = [-1, 1].
Position 1 has a brightness of 2, illuminated by the first and second street light.
Return 1 because it is the brightest position on the street.
Example 3:
Input: lights = [[1,2]]
Output: -1
Explanation:
The first street lamp lights up the area from [1 - 2, 1 + 2] = [-1, 3].
Positions -1, 0, 1, 2, and 3 have a brightness of 1,
illuminated by the first street light.
Out of all these positions, -1 is the smallest, so return it.
Constraints:
1 <= lights.length <= 105
lights[i].length == 2
-108 <= positioni <= 108
0 <= rangei <= 108
|
|