1851 Minimum Interval to Include Each Query

You are given a 2D integer array intervals, where intervals[i] = [lefti, righti] describes the ith interval starting at lefti and ending at righti (inclusive). The size of an interval is defined as the number of integers it contains, or more formally righti - lefti + 1.

You are also given an integer array queries. The answer to the jth query is the size of the smallest interval i such that lefti <= queries[j] <= righti. If no such interval exists, the answer is -1.

Return an array containing the answers to the queries.

Example 1:

Input: intervals = [[1,4],[2,4],[3,6],[4,4]], queries = [2,3,4,5]
Output: [3,3,1,4]
Explanation: The queries are processed as follows:
- Query = 2: The interval [2,4] is the smallest interval containing 2. The answer is 4 - 2 + 1 = 3.
- Query = 3: The interval [2,4] is the smallest interval containing 3. The answer is 4 - 2 + 1 = 3.
- Query = 4: The interval [4,4] is the smallest interval containing 4. The answer is 4 - 4 + 1 = 1.
- Query = 5: The interval [3,6] is the smallest interval containing 5. The answer is 6 - 3 + 1 = 4.

Example 2:

Input: intervals = [[2,3],[2,5],[1,8],[20,25]], queries = [2,19,5,22]
Output: [2,-1,4,6]
Explanation: The queries are processed as follows:
- Query = 2: The interval [2,3] is the smallest interval containing 2. The answer is 3 - 2 + 1 = 2.
- Query = 19: None of the intervals contain 19. The answer is -1.
- Query = 5: The interval [2,5] is the smallest interval containing 5. The answer is 5 - 2 + 1 = 4.
- Query = 22: The interval [20,25] is the smallest interval containing 22. The answer is 25 - 20 + 1 = 6.

Constraints:

  • 1 <= intervals.length <= 105
  • 1 <= queries.length <= 105
  • intervals[i].length == 2
  • 1 <= lefti <= righti <= 107
  • 1 <= queries[j] <= 107
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
class Solution:
    def minInterval(self, intervals: List[List[int]], queries: List[int]) -> List[int]:
        intervals = sorted(intervals)[::-1]
        queries = sorted([(q, i) for i, q in enumerate(queries)])
        
        heap = []
        res = [-1] * len(queries)

        for q, qi in queries:
            while intervals and intervals[-1][0] <= q:
                i, j = intervals.pop()
                if j >= q:
                    heapq.heappush(heap, (j - i + 1, j))
            while heap and heap[0][1] < q:
                heapq.heappop(heap)
            if heap:
                res[qi] = heap[0][0]
        return res