Given an m x n
binary matrix mat
, return the number of submatrices that have all ones.
Example 1:
1 0 1
1 1 0
1 1 0
Input: mat = [[1,0,1],[1,1,0],[1,1,0]]
Output: 13
Explanation:
There are 6 rectangles of side 1x1.
There are 2 rectangles of side 1x2.
There are 3 rectangles of side 2x1.
There is 1 rectangle of side 2x2.
There is 1 rectangle of side 3x1.
Total number of rectangles = 6 + 2 + 3 + 1 + 1 = 13.
Example 2:
0 1 1 0
0 1 1 1
1 1 1 0
Input: mat = [[0,1,1,0],[0,1,1,1],[1,1,1,0]]
Output: 24
Explanation:
There are 8 rectangles of side 1x1.
There are 5 rectangles of side 1x2.
There are 2 rectangles of side 1x3.
There are 4 rectangles of side 2x1.
There are 2 rectangles of side 2x2.
There are 2 rectangles of side 3x1.
There is 1 rectangle of side 3x2.
Total number of rectangles = 8 + 5 + 2 + 4 + 2 + 2 + 1 = 24.
Constraints:
1 <= m, n <= 150
mat[i][j]
is either 0
or 1
.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
|
class Solution:
def numSubmat(self, mat: List[List[int]]) -> int:
m, n = len(mat), len(mat[0])
for i in range(m):
for j in range(1, n):
if mat[i][j]:
mat[i][j] = mat[i][j-1] + 1
res = 0
'''
For each 1 within a row, count the submatrices that contain
the 1 and start on the same row either at the 1 or to the
left of the 1. Proceed down the column that contains the 1
until reaching a 0 or the bottom row of the matrix. While
proceeding down a column, the width of the submatrices stays
the same or gets thinner.
'''
for i in range(m):
for j in range(n):
if mat[i][j] == 0:
continue
row = i
width = mat[i][j]
while row < m and mat[row][j]:
width = min(width, mat[row][j])
res += width
row += 1
return res
'''
Faster DP
'''
class Solution:
def numSubmat(self, mat: List[List[int]]) -> int:
m, n =len(mat), len(mat[0])
res = 0
histogram = [0] * (n+1)
for i in range(m):
stack, dp = [-1], [0] * (n+1)
for j in range(n):
histogram[j] = 0 if mat[i][j] == 0 else histogram[j] + 1
while histogram[j] < histogram[stack[-1]]:
stack.pop()
vertical_choices = histogram[j]
horizontal_choices = j - stack[-1]
dp[j] = dp[stack[-1]] + vertical_choices * horizontal_choices
res += dp[j]
stack.append(j)
return res
|