146 LRU Cache

Design a data structure that follows the constraints of a Least Recently Used (LRU) cache.

Implement the LRUCache class:

  • LRUCache(int capacity) Initialize the LRU cache with positive size capacity.
  • int get(int key) Return the value of the key if the key exists, otherwise return -1.
  • void put(int key, int value) Update the value of the key if the key exists. Otherwise, add the key-value pair to the cache. If the number of keys exceeds the capacity from this operation, evict the least recently used key.

The functions get and put must each run in O(1) average time complexity.

Example 1:

Input
["LRUCache", "put", "put", "get", "put", "get", "put", "get", "get", "get"]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]]
Output
[null, null, null, 1, null, -1, null, -1, 3, 4]

Explanation
LRUCache lRUCache = new LRUCache(2);
lRUCache.put(1, 1); // cache is {1=1}
lRUCache.put(2, 2); // cache is {1=1, 2=2}
lRUCache.get(1);    // return 1
lRUCache.put(3, 3); // LRU key was 2, evicts key 2, cache is {1=1, 3=3}
lRUCache.get(2);    // returns -1 (not found)
lRUCache.put(4, 4); // LRU key was 1, evicts key 1, cache is {4=4, 3=3}
lRUCache.get(1);    // return -1 (not found)
lRUCache.get(3);    // return 3
lRUCache.get(4);    // return 4

Constraints:

  • 1 <= capacity <= 3000
  • 0 <= key <= 104
  • 0 <= value <= 105
  • At most 2 * 105 calls will be made to get and put.
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
class Node():
    def __init__(self, key, val):
        self.key = key
        self.val = val
        self.prev = None
        self.next = None

class LRUCache:

    def __init__(self, capacity: int):
        self.cache = {}
        self.size = 0
        self.capacity = capacity
        self.head = Node(0, 0)
        self.tail = Node(0, 0)
        self.head.next = self.tail
        self.tail.prev = self.head

    def _add_node(self, node):
        # add to head
        node.prev = self.head
        node.next = self.head.next
        self.head.next.prev = node
        self.head.next = node
        
    def _remove_node(self, node):
        # remove from tail
        prev_node = node.prev
        next_node = node.next
        prev_node.next = next_node
        next_node.prev = prev_node
        
    def _move_to_head(self, node):
        self._remove_node(node)
        self._add_node(node)
    
    def _pop_tail(self):
        node = self.tail.prev
        self._remove_node(node)
        return node
        
    def get(self, key: int) -> int:
        node = self.cache.get(key, None)
        if not node:
            return -1
        
        self._move_to_head(node)
        return node.val

    def put(self, key: int, value: int) -> None:
        node = self.cache.get(key)
        if not node:
            new_node = Node(key, value)

            self.cache[key] = new_node
            self._add_node(new_node)
            
            self.size += 1
            if self.size > self.capacity:
                tail = self._pop_tail()
                del self.cache[tail.key]
                self.size -= 1
        else:
            node.val = value
            self._move_to_head(node)

# Your LRUCache object will be instantiated and called as such:
# obj = LRUCache(capacity)
# param_1 = obj.get(key)
# obj.put(key,value)