You are given two integers n
and k
and two integer arrays speed
and efficiency
both of length n
. There are n
engineers numbered from 1
to n
. speed[i]
and efficiency[i]
represent the speed and efficiency of the i^{th}
engineer respectively.
Choose at most k
different engineers out of the n
engineers to form a team with the maximum performance.
The performance of a team is the sum of their engineers' speeds multiplied by the minimum efficiency among their engineers.
Return the maximum performance of this team. Since the answer can be a huge number, return it modulo 10^{9} + 7
.
Example 1:
Input: n = 6, speed = [2,10,3,1,5,8], efficiency = [5,4,3,9,7,2], k = 2
Output: 60
Explanation:
We have the maximum performance of the team by selecting
engineer 2 (with speed=10 and efficiency=4) and
engineer 5 (with speed=5 and efficiency=7).
That is, performance = (10 + 5) * min(4, 7) = 60.
Example 2:
Input: n = 6, speed = [2,10,3,1,5,8], efficiency = [5,4,3,9,7,2], k = 3
Output: 68
Explanation:
This is the same example as the first but k = 3. We can select engineer 1,
engineer 2 and engineer 5 to get the maximum performance of the team.
That is, performance = (2 + 10 + 5) * min(5, 4, 7) = 68.
Example 3:
Input: n = 6, speed = [2,10,3,1,5,8], efficiency = [5,4,3,9,7,2], k = 4
Output: 72
Constraints:
1 <= k <= n <= 10^{5}
speed.length == n
efficiency.length == n
1 <= speed[i] <= 10^{5}
1 <= efficiency[i] <= 10^{8}
 Keep track of the engineers by their efficiency in decreasing order.
 Starting from one engineer, to build a team, it suffices to bring K1 more engineers who have higher efficiencies as well as high speeds.

